研究成果

1. S. Jiang, M. Su, S. Yang, C. Wang, Q. Huang, G. Li, H. Xie, J. Yang, G. Wu, W. Zhang, Z. Zhang, J. Kuo, Z. Liu, D. H. Zhang, X. Yang, and L. Jiang, Vibrational Signature of Dynamic Coupling of a Strong Hydrogen Bond, J. Phys. Chem. Lett., 2021, 12, 2259-2265.

2. Y. Fu, Y. Bai, Y. Han, Bina Fu, and D. H. Zhang, Double-Roaming Dynamics in the H+C2H2→H2+C2H Reaction: Acetylene-Facilitated Roaming and Vinylidene-Facilitated Roaming, J. Phys. Chem. Lett. 2021, 12, 4211-4217.

3. Y. Fu, X. Lu, Y. Han, B. Fu, and D. H. Zhang, Supercollisions of fast H-atom with ethylene on an accurate full-dimensional potential energy surface, J. Chem. Phys., 154, 024302 (2021).

4. J. Huang, B. K. Kendrick, and D. H. Zhang, Mechanistic Insights into Ultracold Chemical Reactions under the Control of the Geometric Phase, J. Phys. Chem. Lett., 2021, 12, 2160−2165.

5. W. Chen, R. Wang, D. Yuan, H. Zhao, C. Luo, Y. Tan, S. Li, D. H. Zhang, X. Wang, Z. Sun, X. Yang, Quantum interference between spin-orbit split partial waves in the F + HD→HF + D reaction, Science 371, 936–940 (2021).

6. Z. Yin, B. J. Braams, Y. Guan, B. Fu, and D. H. Zhang, A fundamental invariant-neural network representation of quasi-diabatic Hamiltonians for the two lowest states of H3, Phys. Chem. Chem. Phys., 2021, 23, 1082-1091

7. B. Zhang, Y. Yu, Z. Zhang, Y. Zhang, S. Jiang, Q. Li, S. Yang, H. Hu, W. Zhang, D. Dai, G. Wu, J. Li, D. H. Zhang, X. Yang, and L. Jiang, Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser, J. Phys. Chem. Lett., 11 (2020) 851-855.

8. B. Zhang, S. Yang, Q. Huang, S. Jiang, R. Chen, X. Yang, D. H. Zhang, Z. Zhang, J. Kuo, and L. Jiang, Deconstructing Vibrational Motions on the Potential Energy Surfaces of Hydrogen-Bonded Complexes, CCS Chem. 2 (2020) 829-835.

9. T. Liu, B. Fu, D. H. Zhang, A comparison study of the six-dimensional quantum dynamics for the dissociative chemisorption of HCl on different facets of Ag, Chem. Phys. Lett., 761 (2020) 138078.

10. X. Lu, B. Fu, and D. H. Zhang, Dynamics and kinetics of the OH+HO2→H2O+O2(1△g) reaction on a global full-dimensional singlet-state potential energy surface, Phys. Chem. Chem. Phys. 22 (2020) 26330.

11. Z. Zhang, F. Gatti, and D. H. Zhang, Full-dimensional quantum mechanical calculations of the reaction probability of the H+CH4reaction based on a mixed Jacobi and Radau description, J. Chem. Phys., 152 (2020) 201101.

12. J. Huang, and D. H. Zhang, An efficient way to incorporate the geometric phase in the time-dependent wave packet calculations in a diabatic representation, J. Chem. Phys., 153 (2020) 141102-1-141102-5.

13. Y, Fu, X, Lu, Y, Han, B, Fu, D. H. Zhang and J. M. Bowman, Collision-induced and complex-mediated roaming dynamics in the H+C2H4→H2+C2H3reaction, Chemical Science, 11 (2020) 2148-2154.

14. L. Li, B. Fu, X. Yang, D. H. Zhang, A global ab initio potential energy surface and dynamics of the proton-transfer reaction: OH-+D2→HOD+D-, Phys. Chem. Chem. Phys., 22 (2020) 8203-8211.

15. J. Huang, J. Chen, S. Liu, D. H. Zhang, Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Four-Atom Reactions, Journal of Physical Chemistry Letters, 11 (2020) 8560-8564.

16. R. Chen, K. Shao, B. Fu, and D. H. Zhang, Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms, J. Chem. Phys., 152 (2020) 204307.

17. Y. Hong, Z. Yin, Y. Guan, Z. Zhang, B. Fu and D. H. Zhang. Exclusive Neural Network Representation of the Quasi-Diabatic Hamiltonians Including Conical Intersections. J. Phys. Chem. Lett.,11(2020) 7552-7558.

18. Z. Chen, J. Chen, R. Chen, T. Xie, X. Wang, S. Liu, G. Wu, D. Dai, X. Yang, and D. H. Zhang, Reactivity oscillation in the heavy–light–heavy Cl+CH4 reaction, Proc. Nat. Acad. Sci. USA, 117 (2020) 9202-9207.

19. Y. Xie, H. Zhao, Y. Wang, Y. Huang, T. Wang, X. Xu, C. Xiao, Z. Sun, D. H. Zhang, X. Yang, Quantum interference in H+HD→H2+D between direct abstraction and roaming insertion pathways, Science,368(2020) 767-771.

20. X. Zhang, L. Li, J. Chen, S. Liu, D. H. Zhang, Feshbach resonances in the F+H2O→HF+OH reaction, Nat. Commun.,11(2020) 223-1~223-5.

21. R. Chen, H. Su, D. Liu, R. Huang, X. Meng, X. Cui, Z. Tian, D. H. Zhang, D. H. Deng, Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide, Angew. Chem. Int. Edit.,59(2020)154-160.

22. T. Yang, L. Huang, C. Xiao, J. Chen, T. Wang, D. Dai, F. Lique, M. H. Alexander, Z. Sun, D. H. Zhang, X. Yang, and D. M. Neumark, Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunneling, Nature Chemistry,11(2019) 744-749.

23. Q. Wang, R. Chen, J. Lou, D. H. Zhang, Y. Zhou, and Z. Yu, Highly Regioselective C−H Alkylation of Alkenes Through an Aryl to Vinyl 1,4-Palladium Migration/C−C Cleavage Cascade, ACS Catal.9(2019) 11669-11675.

24. B. Fu, J. Chen, T. Liu, K. Shao, D. H. Zhang, Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems, Acta Phys. -Chim. Sin.35(2019) 145-157.

25. X. Cui, H. Su, R. Chen, J. Xiao, M. Zhang, D. Ma , D. Deng, D. H. Zhang, Z. Tian, and X. Bao, Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production, Nature communications,10(2019) 86-1~86-8.

26. Z. Yin, Y. Guan, B. Fu, and D. H. Zhang, Two-state diabatic potential energy surfaces of ClH2based on nonadiabatic couplings with neural networks, Phys. Chem. Chem. Phys.,21(2019) 20372.

27. Y. Guan, D. H. Zhang, H. Guo, and D. R. Yarkony, Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2,2A0states of LiFH, Phys. Chem. Chem. Phys.,21(2019) 14205.

28. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional potential energy surfaces for the dissociative chemisorption of HCl on rigid Ag(100) and Ag(110) surfaces, J. Chem. Phys.,151(2019) 144707.

29. Z. Zhang, F. Gatti, and D. H. Zhang, Full dimensional quantum mechanical calculations of the reaction probability of the H+NH3collision based on a mixed Jacobi and Radau description, J. Chem. Phys.,150(2019) 204301.

30. R. A. Vargas-Hernández, Y. Guan, D. H. Zhang, and R. V. Krems, Bayesian optimization for the inverse scattering problem in quantum reaction dynamics, New J. Phys.,21(2019) 022001.

31. X. Lu, X. Wang, B. Fu, and D. H. Zhang, Theoretical Investigations of Rate Coefficients of H+H2O2→OH+H2O on a Full-Dimensional Potential Energy Surface, J. Phys. Chem. A,123(2019) 3969-3976.

32. X. Xu, J. Chen, S. Liu, D. H. Zhang, An Ab Initio-Based Global Potential Energy Surface for the SH3System and Full-Dimensional State-To-State Quantum Dynamics Study for the H2+HS→H2S+H Reaction, J. Comput. Chem.,40(2019) 1151-1160.

33. X. Shen, D. H. Zhang, Recent advances in quantum dynamics studies of gas-surface reactions, Advances in chemical physics,163(2018) 77-116.

34. X. Lu, K. Shao, B. Fu, X. Wang, D. H. Zhang, An accurate full-dimensional potential energy surface and quasiclassical trajectory dynamics of the H+H2O2two-channel reaction, Phys. Chem. Chem. Phys.,20(2018) 23095-23105.

35. X. Lu, Q. Y. Meng, X. Wang, B. Fu, D. H. Zhang, Rate coefficients of the H+H2O2→H2+HO2reaction on an accurate fundamental invariant-neural network potential energy surface, J. Chem. Phys.149(2018) 174303.

36. T. Wang, T. Yang, C. Xiao,* Z. Sun,* D. H. Zhang,* X. Yang,* M. L. Weichman*, and D. M. Neumark*, Dynamical resonances in chemical reactions, Chem. Soc. Rev.,47(2018) 6744.

37. D. Yuan, Y. Guan, W. Chen, H. Zhao, S. Yu, C. Luo, Y. Tan, T. Xie, X. Wang, Z. Sun, D. H. Zhang, X. Yang, Observation of the geometric phase effect in the H+HD→H2+D reaction. Science,362(2018) 1289-1293.

38. D. Yuan, S. Yu, W. Chen, J. Sang, C. Luo, T. Wang, X. Xu, P. Casavecchia, X. Wang, Z. Sun, D. H. Zhang, and X. Yang, Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction, Nature Chemistry,10(2018) 653-658.

39. J. Chen, X. Xu, S. Liu, and D. H. Zhang, A neural network potential energy surface for the F+CH4reaction including multiple channels based on coupled cluster theory, Phys. Chem. Chem. Phys.,20(2018) 9090-9100.

40. D. Yang, X. Hu, D. H. Zhang, and D. Xie, An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision, J. Chem. Phys.148(2018) 129901.

41. D. Yang, X. Hu, D. H. Zhang, and D. Xie, An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision, J. Chem. Phys.148(2018) 084101.

42. P. Sun, J. Chen, S. Liu, D. H. Zhang, Accurate integral cross sections for the H+CO2→OH+CO reaction, Chemical Physics Letters,706(2018) 675-679.

43. P. Sun, Z. Zhang, J. Chen, S. Liu, and D. H. Zhang, Well converged quantum rate constants for the H2+OH→H2O+H reaction via transition state wave packet, J. Chem. Phys.149(2018) 064303.

44. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional quantum dynamics for the dissociative chemisorption of HCl on rigid Ag(111) on three potential energy surfaces with different density functionals, J. Chem. Phys.149(2018) 174702.

45. T. Liu, J. Chen, Z. Zhang, X. Shen, B. Fu, and D. H. Zhang, Water dissociating on rigid Ni(100): A quantum dynamics study on a full- dimensional potential energy surface, J. Chem. Phys.148(2018) 144705.

46. J. Huang, S. Liu, and D. H. Zhang, Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules, Physical review letters120(2018) 143401.

47. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional potential energy surfaces of the dissociative chemisorption of HCl on Ag(111) with three density functionals, J. Chem. Phys.149(2018) 054702.

48. Y. Guan, S. Yang, and D. H. Zhang, Construction of reactive potential energy surfaces with Gaussian process regression: active data selection, molecular physics,116(2018) 823-834.

49. Z. Zhao, J. Chen, Z. Zhang, D. H. Zhang, X. Wang, T. Carrington, Jr., and F. Gatti, Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem, J. Chem. Phys.148(2018) 074113.

50. Y. Guan, S. Yang, D. H. Zhang, Application of Clustering Algorithms to Partitioning Configuration Space in Fitting Reactive Potential Energy Surfaces, J. Phys. Chem. A,122(2018) 3140−3147.

51. B. Fu, D. H. Zhang, Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions, J. Chem. Theory. Comput.14(2018) 2289-2303.

52. T. Liu, B. Fu, and D. H. Zhang, HCl dissociating on a rigid Au(111) surface: A six-dimensional quantum mechanical study on a new potential energy surface based on the RPBE functional, J. Chem. Phys.146(2017) 164706-1~164706-9.

53. D. Zhang, J. Yang, Z. Chen, R. Chen, B. Jiang, D. Dai, G. Wu, D. H. Zhang, and X. Yang, CH stretching excitation promotes its cleavage in the F+CHD3(v1=1)→HF+CD3reaction at low collision energies, Phys. Chem. Chem. Phys.,19(2017) 13070-13074.

54. J. Chen, N. Su, X. Xu , and D. H. Zhang, Accurate Potential Energy Surfaces for Hydrogen Abstraction Reactions: A Benchmark Study on the XYG3 Doubly Hybrid Density Functional, Journal of Computational Chemistry,38(2017) 2326-2334.

55. T. Liu, B. Fu and D. H. Zhang, An approximate full-dimensional quantum dynamics study of the mode specificity in the dissociative chemisorption of D2O on rigid Cu(111), Phys. Chem. Chem. Phys.,19(2017) 11960-11967.

56. Y. Guan, B. Fu, and D. H. Zhang, Construction of diabatic energy surfaces for LiFH with artificial, neural networks, J. Chem. Phys.,147(2017) 224307.

57. P. Sun, J. Chen, S. Liu, D. H. Zhang, A full-dimensional time-dependent wave packet study of the H+CO2→OH+CO reaction, Chemical Physics Letters,683(2017) 352–356.

58. B. Fu, X. Shan, D. H. Zhang and David C. Clary, Recent advances in quantum scattering calculations on polyatomic bimolecular reactions, Chem. Soc. Rev.,46(2017) 7625-7649.

59. Z. Zhao, S. Liu, D. H. Zhang, Differential Cross Sections for the H+D2O→HD+OD Reaction: a Full Dimensional State-to-State Quantum Dynamics Study, Chinese journal of chemical physics,30(2017)16-24.

60. X. Shen, Z. Zhang, and D. H. Zhang, Methane dissociation on Ni(111): A seven-dimensional to nine-dimensional quantum dynamics study, J. Chem. Phys.147(2017) 024702-1~024702-8.

61. Z. Zhao, Z, Zhang, S. Liu, D. H. Zhang, Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism, Nat. Commun.,8(2017) 14506-1~14506-7.

62. Z. Ren, Z. Sun, D. H. Zhang, X. Yang, A review of dynamical resonances in A+BC chemical reactions, Rep. Prog. Phys.,80(2017) 026401-1~026401-25.

63. N. Su, J. Chen, X. Xu, D. H. Zhang, Quantum reaction dynamics based on a new generation density functional and neural network potential energy surfaces, Acta Phys. -Chim. Sin. (物理化学学报),32(2016) 119-130.

64. Q. Meng, K. M. Hickson, K. Shao, J. C. Loisonc, D. H. Zhang, Theoretical and experimental investigations of rate coefficients of O(1D)+CH4at low temperature, Phys. Chem. Chem. Phys.,18(2016) 29286-29292.

65. X. Shen, Z. Zhang, D. H. Zhang, Eight-dimensional quantum dynamics study of CH4and CD4dissociation on Ni(100) surface, J. Phys. Chem. C,120(2016) 20199-20205.

66. S. Liu, D. H. Zhang, A local mode picture for H atom reaction with vibrationally excited H2O: a full dimensional state-to-state quantum dynamics investigation, Chem. Sci.,7(2016) 261-265.

67. X. Shen, Z. Zhang, D. H. Zhang, Communication: Methane dissociation on Ni(111) surface: Importance of azimuth and surface impact site, J. Chem. Phys.,144(2016) 101101-1~101101-4.

68. Q. Meng, J. Chen, D. H. Zhang, Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane, J. Chem. Phys.,144(2016) 154312-1~154312-7.

69. Z. Zhao, J. Chen, Z. Zhang, D. H. Zhang, David Lauvergnat, and Fabien Gatti, Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: Applications to methane and fluoromethane, J. Chem. Phys.,144(2016) 204302-1~204302-10.

70. K. Shao, J. Chen, Z. Zhao, D. H. Zhang, Communication: Fitting potential energy surfaces with fundamental invariant neural Network, J. Chem. Phys.,145(2016) 071101-1~071101-5.

71. Z. Zhao, S. Liu, D. H. Zhang, State-to-state differential cross sections for a four-atom reaction: H2+OH→H2O+H in full dimensions, J. Chem. Phys.,145(2016) 134301-1~134301-8.

72. T. Liu, Z. Zhang, B. Fu, X. Yang, D. H. Zhang, Mode specificity for the dissociative chemisorption of H2O on Cu(111): a quantum dynamics study on an accurately fitted potential energy surface, Phys. Chem. Chem. Phys.,18(2016) 8537-8544.

73. T. Liu, Z. Zhang, J. Chen, B. Fu, D. H. Zhang, Mode specificity of the dissociative chemisorption of HOD on rigid Cu(111): an approximate full- dimensional quantum dynamics study, Phys. Chem. Chem. Phys.,18(2016) 26358-23624.

74. Z. Zhang, T. Liu, B. Fu, X. Yang, D. H. Zhang, First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111), Nat. Commun.,7(2016) 11953-1~11953-7.

75. D. H. Zhang, H. Guo, Recent advances in quantum dynamics of bimolecular reactions, Annu. Rev. Phys. Chem.,67(2016) 135-158.

76. T. Liu, Z. Zhang, B. Fu, X. Yang, and D. H. Zhang, A seven-dimensional quantum dynamics study of the dissociative chemisorption of H2O on Cu(111): effects of azimuthal angles and azimuthal angle averaging, Chem. Sci.,7(2016) 1840-1845.

77. L. Chen, K. Shao, J. Chen, M. Yang, D. H. Zhang, Full-dimensional quantum dynamics study of the H2+C2H→H+C2H2reaction on an ab initio potential energy surface, J. Chem. Phys.,144(2016) 194309-1~194309-7.

78. J. Chen, D. H. Zhang, Construction of molecular reactive potential energy surfaces based on neural networks, Sci. Sin. Chim. (中国科学),45(2015) 1241-1253.

79. J. Yang, D. Zhang, Z. Chen, F. Blauert, B. Jiang, D. Dai, G. Wu, D. H. Zhang, and X. Yang, Effect of CH stretching excitation on the reaction dynamics of F+CHD3→DF+CHD2, J. Chem. Phys.,143(2015) 044316-1~ 044316-6.

80. Z. Zhang, J. Chen, M. Yang, and D. H. Zhang, Time-dependent wave packet study of the H2+CH3→H+CH4reaction, J. Phys. Chem. A,119(2015) 12480-12484.

81. T. Yang, L. Huang, Y. Xie, T. Wang, C. Xiao, Z. Sun, D. Dai, M. Chen, D. H. Zhang, X. Yang, Effect of reagent rotational excitation on dynamics of F+H2→HF+H, Chin. J. Chem. Phys.,28(2015) 471-475.

82. T. Yang, L. Huang, T. Wang, C. Xiao, Y. Xie, Z. Sun, D. Dai, M. Chen, D. H. Zhang, and X. Yang, Effect of reagent vibrational excitation on the dynamics of F+H2(v=1, j=0)→HF(v′, j′)+H reaction, J. Phys. Chem. A,119(2015) 12284-12290.

83. Z. Sun and D. H. Zhang, Development of the potential energy surface and current stage of the quantum dynamics studies of the F+H2/HD reaction, Int. J. Quantum Chem.,115(2015) 689-699.

84. K. Shao, B. Fu, D. H. Zhang, Quasiclassical trajectory study of the reaction of CD4with O(1D), Chin. J. Chem. Phys.,28(2015) 403-408.

85. K. Shao, B. Fu, D. H. Zhang, A global full-dimensional potential energy surface and quasiclassical trajectory study of the O(1D) + CH4multichannel reaction, Phys. Chem. Chem. Phys.,17(2015) 24098-24107.

86. Q. Meng, J. Chen, D. H. Zhang, Communication: Rate coefficients of the H+CH4→H2+CH3reaction from ring polymer molecular dynamics on a highly accurate potential energy surface, J. Chem. Phys.,143(2015) 101102-1~101102-5.

87. J. Li, J. Chen, Z. Zhao, D. Xie, D. H. Zhang, H. Guo, A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H+CH4system, J. Chem. Phys.,142(2015) 204302-1~204302-6.

88. N. Q. Su, J. Chen, Z. Sun, D. H. Zhang, X. Xu, H+H2quantum dynamics using potential energy surfaces based on the XYG3type of doubly hybrid density functionals: Validation of the density functionals, J. Chem. Phys.,142(2015) 084107-1~084107-9.

89. X. Shen, J. Chen, Z. Zhang, K. Shao, D. H. Zhang, Methane dissociation on Ni(111): A fifteen-dimensional potential energy surface using neural network method, J. Chem. Phys.,143(2015) 144701-1~144701-10.

90. F. Bina, D. H. Zhang,A full-dimensional quantum dynamics study of the mode specificity in the H+HOD abstraction reaction.,J. Chem. Phys.,142(2015) 064314-1~064314-9.

91. J. Chen, Z. Sun, D. H. Zhang, An accurate potential energy surface for the F+H2→HF+H reaction by the coupled-cluster method, J. Chem. Phys.,142(2015) 024303-1~024303-11.

92. T. Yang, J. Chen, L. Huang, T. Wang, C. Xiao, Z. Sun, D. Dai, X. Yang, D. H. Zhang, Extremely short-lived reaction resonances in Cl+HD(v=1)→DCl+H due to chemical bond softening, Science,347(2015) 60-63.

93. J. Li, J. Chen, D. H. Zhang, H. Guo, Quantum and quasi-classical dynamics of the OH+CO→H+CO2reaction on a new permutationally invariant neural network potential energy surface, J. Chem. Phys.,140(2014) 044327-1~044327-6.

94. C. Xie, J. Ma, X. Zhu, D. H. Zhang, D. R. Yarkony, D. Xie, H. Guo, Full-dimensional quantum state-to-State nonadiabatic dynamics for photodissociation of ammonia in its A-band, J. Phys. Chem. Lett.,5(2014) 1055-1060.

95. H. Pan, J. Yang, Q. Shuai, D. Zhang, W. Zhang, G. Wu, D. Dai, B. Jiang, D. H. Zhang, X. Yang, Velocity map imaging study of the reaction dynamics of the H+CH4→H2+CH3reaction: The isotope effects, J. Phys. Chem. A,118(2014) 2426-2430.

96. B. Zhao, D. H. Zhang, S.-Y. Lee, Z. Sun, Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method, J. Chem. Phys.,140(2014) 164108-1~164108-8.

97. J. Yang, D. Zhang, B. Jiang, D. Dai, G. Wu, D. H. Zhang, X. Yang, How is C-H vibrational energy redistributed in F+CHD3(v1=1)→HF+CD3, J. Phys. Chem. Lett.,5(2014) 1790-1794.

98. W. Li, D. H. Zhang, Z. Sun, Efficient fourth-order split operator for solving the triatomic reactive Schrodinger equation in the time-dependent wavepacket approach, J. Phys. Chem. A,118(2014) 9801-9810.

99. T. Wang, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, D. H. Zhang, Isotope-dependent rotational states distributions enhanced by dynamic resonance states: A comparison study of the F+HD→HF(VHF=2)+D and F+H2→HF(VHF=2)+H Reaction, J. Phys. Chem. Lett.,5(2014) 3049-3055.

100. J. Yang, K. Shao, D. Zhang, Q. Shuai, B. Fu, D. H. Zhang, X. Yang, Trapped abstraction in the O(1D)+CHD3→OH+CD3reaction, J. Phys. Chem. Lett.,5(2014) 3106-3111.

101. K. Werner, D. H. Zhang, Communication: Separable potential energy surfaces from multiplicative artificial neural networks, J. Chem. Phys.,141(2014) 021101-1~021101-4.

102. Y. Zhou, D. H. Zhang, Eight-dimensional quantum reaction rate calculations for the H+CH4and H2+CH3reactions on recent potential energy surfaces, J. Chem. Phys.,141(2014) 194307-1~194307-8.

103. Xin Xu, Jun Chen, Dong H. Zhang, Global potential energy surface for the H+CH4↔H2+CH3reaction using neural networks, Chin. J. Chem. Phys.,27(2014) 373-379.

104. T. Liu, B. Fu, D. H. Zhang, Validity of the site-averaging approximation for modeling the dissociative chemisorption of H2on Cu(111) surface: A quantum dynamics study on two potential energy surfaces, J. Chem. Phys.,141(2014) 194302-1~194302-8.

105. Z. Zhang, D. H. Zhang, Effects of reagent rotational excitation on the H+CHD3→H2+CD3reaction: A seven dimensional time-dependent wave packet study, J. Chem. Phys.,141(2014) 114309-1~114309-8.

106. Z. Zhang, J. Chen, S. Liu, D. H. Zhang, Accuracy of the centrifugal sudden approximation in the H+CHD3→H2+CD3reaction, J. Chem. Phys.,140(2014) 224304-1~224304-7.

107. S. Liu, J. Chen, B. Fu, D. H. Zhang, State‑to‑state quantum versus classical dynamics study of the OH+CO→H+CO2reaction in full dimensions (J = 0): checking the validity of the quasi‑classical trajectory method, Theor. Chem. Acc.,133(2014) 1558-1~1558-9.

108. T. Liu, B. Fu, and Dong H. Zhang, Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface, J. Chem. Phys.,140(2014) 144701-1~144701-7.

109. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks. Sci. China Chem.,57(2014) 147-155.

110. T. Liu, B. Fu, D. H. Zhang, Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface, J. Chem. Phys.,139(2013) 184705-1~184705-8.

111. X. Yang, D. H. Zhang, Probing quantum dynamics of elementary chemical reactions via accurate potential energy surfaces, Zeitschrift Fur Physikalische Chemie-international Journal of Research in Physical Chemistry & Chemical Physics,227(2013) 1247-1265.

112. S. P. Liu, P. Jin, D. H. Zhang, C. Hao, X. Yang, Reaction mechanism for methanol oxidation on Au(111): A density functional theory study, Appl. Surf. Sci.,265(2013) 443-451.

113. D. Yu, S. Cong, D. H. Zhang, Z. Sun, Mapped finite element discrete variable representation, Chin. J. Chem. Phys.,26(2013) 755-764.

114. T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, D. H. Zhang, Dynamical resonances accessible only by reagent vibrational excitation in the F+HD→HF+D reaction,Science,342(2013) 1499-1452.

115. S. Liu, J. Chen, Z. Zhang, and D. H. Zhang, Communication: A six-dimensional state-to-state quantum dynamics study of the H+CH4→H2+CH3reaction (J =0),138(2013) 011101-1~011101-4 (JCP Communication).

116. J. Chen, X. Xu , X. Xu, D. H. Zhang, A global potential energy surface for the H2+OH↔H2O+H reaction using neural networks. J. Chem. Phys.,138(2013) 154301-1~154301-8.

117. B. Fu, D. H. Zhang, Mode specificity in the H+H2O→H2+OH reaction: A full-dimensional quantum dynamics study. J. Chem. Phys.,138(2013) 184308-1~184308-7.

118. J. Chen, X. Xu, X. Xu, D. H. Zhang, An accurate global potential energy surface for the OH+CO→H+CO2reaction using neural networks. J. Chem. Phys.,138(2013) 221104-1~221104-4 (JCP Communication).

119. B. Fu, D. H. Zhang, J. M. Bowman , Quasiclassical trajectory studies of18O(3P) + NO2isotope exchange and reaction to O2+NO on D0and D1potentials. J. Chem. Phys.,139(2013) 024303-1~024303-7.

120. Z. Sun, D. H. Zhang, State-to-State reactive scattering by quantum wavepacket method, Prog. Chem.,24(2012) 1153-1165.

121. S. Liu, C. Xiao, T. Wang, J. Chen, T. Yang, X. Xu, D. H. Zhang, X. Yang, The dynamics of the D2+OH→HOD+D reaction: A combined theoretical and experimental study. Faraday Discussions,157(2012) 1-11.

122. S. P. Liu, P. Jin, C. Hao, D. H. Zhang, X. Yang, S. L. Chen, Reaction mechanism for CO oxidation on Cu(311): A density functional theory Study, Appl. Surf. Sci.,258(2012) 3980-3985.

123. J. Jankunas, N. C.-M. Bartlett, R. N. Zare, L. Liu, X. Xu, D. H. Zhang, D+C(CH3)4→HD(v′, j′)+C(CH3)3CH2: possible concerted flow of vibration energy into translation, Mol. Phys.,110(2012) 1713-1720.

124. T. J. Frankcombe, M. A. Collins, D. H. Zhang, Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity, J. Chem. Phys.,137(2012) 144701-1~144701-10.

125. Z. Zhang, Y. Zhou, D. H. Zhang, Gabor Czako, Joel M. Bowman, Theoretical study of the validity of the Polanyi rules for the late-barrier Cl+CHD3reaction,J. Phys. Chem. Lett.,3(2012) 3416-3419.

126. X. Yang, T. K. Minton, D. H. Zhang Rethinking chemical reactions at hyperthermal energies, Science,336(2012) 1650-1651.

127. S. Yu, K. Yuan, H. Song, X. Xu, D. Dai, D. H. Zhang, X. Yang, State-to-state differential cross-sections for the reactive scattering of H*(n) with o-D2, Chem. Sci.,3(2012) 2839-2842.

128. Z. Sun, W. Yang, D. H. Zhang, Higher-order split operator schemes for solving the Schrodinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations, Phys. Chem. Chem. Phys.,14(2012) 1827-1845.

129. C. Wang, D. H. Zhang, Accuracy of low-level surface in hierarchical construction of potential energy surface, Chin. J. Chem. Phys.,25(2012) 186-190.

130. S. Liu, X. Xu, D. H. Zhang, Time-dependent wave packet theory for state-to-state differential cross sections of four-atom reactions in full dimensions: Application to the HD+OH→H2O+D reaction, J. Chem. Phys.,136(2012) 144302-1~144302-10.

131. C. Wang, D. H. Zhang, Rex T. Skodje, A six-dimensional wave packet study of the vibrational overtone induced decomposition of hydrogen peroxide, J. Chem. Phys.,136(2012) 164314-1~164314-5.

132. B. Fu, D. H. Zhang, Full-dimensional quantum dynamics study of exchange processes for the D+H2O and D+HOD reactions, J. Chem. Phys.,136(2012) 194301-1~194301-7.

133. C. Wang, S. Liu, and D. H. Zhang, Effects of reagent vibrational excitation on the state-to-state quantum dynamics of the OH+CO→H+CO2reaction in six dimensions (J=0), Chem. Phys. Lett.,537(2012) 16-20.

134. B. Fu, D. H. Zhang, Full-dimensional quantum dynamics study of the H+H2O and H+HOD exchange reactions, J. Phys. Chem. A,116(2012) 820-825.

135. B. Fu, Y. Zhou, D. H. Zhang, Shape resonance in the H+D2O→D+HOD reaction: a full-dimensional quantum dynamics study, Chem. Sci.,3(2012) 270-274.

136. S. Liu, X. Xu, D. H. Zhang, A full-dimensional time-dependent wave packet study of the OH+CO→H+CO2reaction, Theor. Chem. Acc.,131(2012) 1068-1~1068-7.

137. C. Xiahou, J. N. L. Connor, D. H. Zhang, Rainbows and glories in the angular scattering of the state-to-state F+H2reaction at Etrans=0.04088 eV, Phys. Chem. Chem. Phys.,13(2011) 12981-12997.

138. M. A. Collins, O. Godsi, S. Liu, D. H. Zhang, An ab initio quasi-diabatic potential energy matrix for OH(2Σ)+H2, J. Chem. Phys.,135(2011) 234307-1~234307-14.

139. L. Bonnet, J. E. Garcia; J. Corchado, S. Liu, D. H. Zhang, Classical versus quantum vibrational state distributions for the benchmark polyatomic reaction OH+D2: Checking the validity of the QCT method, Chem. Phys. Lett.,516(2011) 137-140.

140. S. Liu, X. Xu, D. H. Zhang, State-to-state quantum dynamics study of the OH+CO→H+CO2reaction in full dimensions (J=0), J. Chem. Phys.,135(2011) 141108-1~141108-4 (JCP Communication).

141. Y. Zhou, C. Wang, D. H. Zhang, Effects of reagent vibrational excitation on the dynamics of the H+CHD3→H2+CD3reaction: A seven-dimensional time-dependent wave packet study, J. Chem. Phys.,135(2011) 024313-1~024313-9.

142. Z. Li, C. Xie, B. Jiang, D. Xie, L. Liu, Z. Sun, D. H. Zhang, H. Guo, Quantum and quasiclassical state-to-state dynamics of the NH+H reaction: Competition between abstraction and exchange channels, J. Chem. Phys.,134(2011) 134303-1~134303-8.

143. Y. Zhou, B. Fu, C. Wang, M. A. Collins, D. H. Zhang, Ab initio potential energy surface and quantum dynamics for the H+CH4→H2+CH3 reaction, J. Chem. Phys.,134(2011) 064323-1~064323-8.

144. C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, X. Xu, D. H. Zhang, X. Yang, Experimental and theoretical differential cross sections for a four-atom reaction: HD+OH→H2O+D, Science,333(2011) 440-442.

145. J. Ma, S. Y. Lin, H. Guo, Z. Sun, D. H. Zhang, and D. Xie, State-to-state quantum dynamics of the O(3P)+OH→H+O2reaction, J. Chem. Phys.,133(2010) 054302-1~054302-9.

146. W. Zhang, Y. Zhou, G. Wu, Y. Lu, H. Pan, B. Fu, Q. Shuai, L. Liu, S. Liu, L. Zhang, B. Jiang, D. Dai, S.-Y. Lee, Z. Xie, B. J. Braams, J. M. Bowman, M. A. Collins, D. H. Zhang, X. Yang, Depression of reactivity by the collision energy in the single barrier H+CD4→HD+CD3reaction, Proc. Nat. Acad. Sci. USA,107(2010) 12782-12785.

147. W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, D. H. Zhang, Transition-state spectroscopy of partial wave resonances in the F+HD reaction, Science,327(2010) 1501-1502.

148. Z. Sun, H. Guo, D. H. Zhang, Extraction of state-to-state reactive scattering attributes from wave packet in reactact Jacobi coordinates, J. Chem. Phys.,132(2010) 084112-1~084112-11.

149. Z. Sun, D. H. Zhang, M. Alexander, Time-dependent wavepacket investigation of state-to-state reactive scattering of Cl with para-H2including the open-shell character of the Cl atom, J. Chem. Phys.,132(2010) 034308-1~034308-14.

150. Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo, D. H. Zhang, State-to-state quantum dynamics of O+O2isotope exchange reactions reveals nonstatistical behavior at atmospheric conditions, Proc. Nat. Acad. Sci. USA,107(2010) 555-558.

151. J. Liu, B. Fu, D. H. Zhang, Quantum wave packet study of the C(1D)+H2reaction, Chem. Phys. Lett.,480(2009) 46-48.

152. Z. Li, D. Xie, Z. Sun, D. H. Zhang, S. Y. Lin, H. Guo, NH(X3Σ)+H/D(2S)→H(2S)+NH/HD exchange reactions: state-to-state quantum scattering and applicability of statistical model, J. Chem. Phys.,131(2009) 124313-1~124313-7.

153. D. H. Zhang, J. Shao, E. Pollak, Frozen Gaussian Series Representation of the Imaginary Time Propagator Theory and Numerical Tests, J. Chem. Phys.,131(2009) 044116-1~044116-9.

154. Z. Sun, S.-Y. Lee, H. Guo, D. H. Zhang, Comparison of Second-order Split Operator and Chebyshev Propagator in Wave Packet Based State-to-State Reactive Scattering Calculations, J. Chem. Phys.,130(2009) 174102-1~174102-10.

155. Z. Sun, B. Fu, D. H. Zhang, S.-Y. Lee, Theoretical Investigation of the Direct Observation of Anharmonic Coupling in CDCl3in the Time Domain with Femtosecond Stimulated Raman Scattering, J. Chem. Phys.,130(2009) 044312-1~044312-8.

156. Z. Sun, X. Lin, S.-Y. Lee, D. H. Zhang, A Reactant-Coordinate-Based Time-Dependent Wave Packet Method for Triatomic State-to-State Reaction Dynamics: Application to the H+O2Reaction, J. Phys. Chem. A,113(2009) 4145-4154.

157. Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S.-Y. Lee, S. Y. Lin, H. Guo, State-to-state Dynamics of the H+O2Reaction, Evidence for Nonstatistical Behavior, J. Am. Chem. Soc.,130(2008) 14962-14963.

158. Z. Sun, Xue Q. Qiu, J. Lu, D. H. Zhang, S.-Y. Lee, Three-state model for femtosecond broadband stimulated Raman scattering. J. Raman Spectrosc.,39(2008) 1568-1577.

159. X. Wang, W. Dong, C. Xiao, L. Che, Z. Ren, D. Dai, X. Wang, P. Casavecchia, X. Yang, B. Jiang, D. Xie, Z. Sun, S.-Y. Lee, D. H. Zhang, H.-J. Werner, M. H. Alexander, The Extent of Non-Born-Oppenheimer Coupling in the Reaction of Cl(2P ) with para-H2, Science,322(2008) 573-576.

160. B. Fu, Y. Zhou, D. H. Zhang, A State-to-state Quantum Dynamical Study of the H+HBr Reaction, J. Theor. Comput. Chem.,7(2008) 777-791.

161. B. Fu, X. Xu, D. H. Zhang, A Hierarchical Construction Scheme for Accurate Potential Energy Surface Generation: An Application to the F+H2reaction, J. Chem. Phys.,129(2008) 011103-1~011103-4.

162. X. Yang, D. H. Zhang, Dynamical Resonances in the Fluorine Atom Reaction with the Hydrogen Molecule, Accounts Chem. Res.,41(2008) 981-989.

163. Z. Ren, L. Che, M. Qiu, X. Wang, W. Dong, D. Dai, X. Wang, X. Yang, Z. Sun, B. Fu, S.-Y. Lee, X. Xu, D. H. Zhang, Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy, Proc. Nat. Acad. Sci. USA,105(2008) 12662-12666.

164. X. Wang, W. Dong, M. Qiu, Z. Ren, L. Che, D. Dai, X. Wang, X. Yang, Z. Sun, B. Fu, S.-Y. Lee, X. Xu, D. H. Zhang, HF(v′=3) forward scattering in the F+H2reaction: Shape resonance and slow-down mechanism, Proc. Nat. Acad. Sci. USA,105(2008) 6227-6231.

165. Z. Sun, J. Lu, D. H. Zhang, S.-Y. Lee, Quantum theory of femtosecond time-resolved stimulated Raman scattering, J. Chem. Phys.,128(2008) 144114-1~144114-13.

166. E. Pollak, J. Shao, D. H. Zhang, Effects of Initial Correlation of the Dynamics of Dissipative Systems, Phys. Rev. E,77(2008) 0211071-0211079.

167. S. Y. Lin, Z. Sun, H. Guo, D. H. Zhang, P. Honvault, D. Xie, S.-Y. Lee, Fully Coriolis-coupled qunatum studies of the H+O2(vi=0-2, ji=0,1)→OH+O reaction on potential energy surface: Integral cross sections and rate constants, J. Phys. Chem. A,112(2008) 602-611.

168. X. Yang, D. Xie, D. H. Zhang, Dynamical resonance in F+H2chemical reaction and rotational excitation effect, Chinese Science Bulletion,52(2007) 1009-1012.

169. L. Zhang, Y. Lu, S.-Y. Lee, D. H. Zhang, A transition State Wave Packet Study of the H+CH4Reaction, J. Chem. Phys.,127(2007) 234313-1~234313-7.

170. Z. Sun, S.-Y. Lee, D. H. Zhang, Time-dependent quantum wave packet study of the F+HCl and F+DCl reaction, Chin. J. Chem. Phys.,20(2007) 365-371.

171. B. Fu, D. H. Zhang, A time-dependent quantum dynamical study of the H+HBr reaction, J. Phys. Chem. A,111(2007) 9516-9521.

172. Z. Sun, Z. Jin, J. Lu, D. H. Zhang, S.-Y. Lee, Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy, J. Chem. Phys.,126(2007) 174104-1~174104-10.

173. L. Che, Z. Ren, X. Wang, W. Dong, D. Dai, X. Wang, D. H. Zhang, X. Yang, L. Sheng, G. Li, H.-J. Werner, F. Lique, M. H. Alexander, Breakdown of the Born-Oppenheimer approximation in the F+o-D2→DF+D reaction, Science,317(2007) 1061-1064.

174. M. Yang, S.-Y. Lee, D. H. Zhang, A seven-dimensional quantum dynamics study of the O(3P)+CH4reaction, J. Chem. Phys.,126(2007) 064303-1~064303-7.

175. L. Wang, M. Yang, A. R. W. McKeller, D. H. Zhang, Spectroscopy and potential energy surface of the H2-CO2van der Waals complex: experimental and theoretical studies, Phys. Chem. Chem. Phys.,9(2007) 131-137.

176. X. Yang, D. Xie, D. H. Zhang, Feshbach resonances in the F+H2chemical reaction,物理(physics),35(2006) 543-545.

177. Z. Ren, Li Che, M. Qiu, X. Wang, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, D. H. Zhang, Probing Feshbach resonances in F+H2(j=1)→HF+H: Dynamical effect of single quantum H2-rotation, J. Chem. Phys.,125(2006) 151102-1~151102-4 (JCP Communication).

178. Z. Ke, W. Lai, D. Xie, D. H. Zhang, First-Principles Potential Energy Surface and Vibrational State of H/Rh(111) at 0.25 and 1 Monolayer Coverages, J. Appl. Phys.,99(2006) 113704-1~113704-2.

179. L. L. Zhang, S.-Y. Lee, D. H. Zhang, A test of continuous configuration time-dependent self-consistent field (CC-TDSCF) method on the H+CH4reaction, J. Phys. Chem. A,110(2006) 5513-5519.

180. Y. Zhou, D. Xie, D. H. Zhang, A three-dimensional ab initio potential energy surface and predicted infrared spectra for the He-N2, J. Chem. Phys.,124(2006) 144317-1~144317-7.

181. D. H. Zhang, State-to-state quantum reactive scattering for four-atom chemical reactions: Differential cross section for the H+H2O→H2+OH abstraction reaction, J. Chem. Phys.,125(2006) 133102-1~133102-4.

182. C. Xu, D. Xie, D. H. Zhang, A global ab initio potential energy surface for F+H2→HF+H, Chin. J. Chem. Phys.,19(2006) 96-98.

183. M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun, D. H. Zhang, Observation of Feshbach resonances in the F+H2→HF+H reaction, Science,311(2006) 1440-1443.

184. K. Yuan, Y. Cheng, X. Liu, S. Harich, X. Yang, D. H. Zhang, Experimental and Quantum Dynamical Study on an Asymmetric Insertion Reaction: State-to-State Dynamics of O(1D)+HD(1Sg+, v′=0, j'=0)→OH(2P, v′′, N′′)+D(2S), Phys. Rev. Lett.,96(2006) 103202-1~103202-4.

185. Y. Lu, S.-Y. Lee, D. H. Zhang, A full dimensional time-dependent wave packet study for the H4four-center, collision induced dissociation, and single exchange reactions: Reaction probabilities J=0, J. Chem. Phys.,124(2006) 011101-1~011101-4 (JCP communication).

186. D. S. Wang, X. Yang, K. L. Han, D. H. Zhang, The failure of CS approximation in quantum reaction scattering with double deep well: Time-dependent calculation for O+NH reaction, J. Theor. Comput. Chem.,4(2005) 857-865.

187. W. Lai, D. Xie, D. H. Zhang, First-principles study of adsorption of methyl, coadsorption of methyl and hydrogen, and methane dissociation on Ni(100), Surf. Sci.,594(2005) 83-92.

188. C. R. Evenhuis, X. Lin, D. H. Zhang, D. Yarkony, M. A. Collins, Interpolation of diabatic potential energy surfaces: Quantum dynamics on ab initio surfaces, J. Chem. Phys.,123(2005) 134110-1~134110-12.

189. C. Xu, D. Xie, D. H. Zhang, S. Y. Lin, H. Guo, A new ab initio potential energy surface of HO2(X2A′′) and quantum studies of HO2vibrational spectrum and rate constants for the H+O2↔O+OH reactions, J. Chem. Phys.,122(2005) 244305-1~244305-8.

190. D. H. Zhang, W. Bao, M. Yang, S.-Y. Lee, Continuous configuration time-dependent self-consistent field method for polyatomic quantum dynamical problems, J. Chem. Phys.,122(2005) 091101-1~091101-4.

191. S. Yoon, D. McCamant, P. Kukura, R. A. Mathies, D. H. Zhang, S.-Y. Lee, Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay, J. Chem. Phys.,122(2005) 024505-1~024505-9.

192. Y. Lu, D. H. Zhang, S.-Y. Lee, A time-dependent wave packet study of the H4four-center reaction, Chem. Phys.,308(2005) 217-224.

193. D. H. Zhang, Eli Pollak, Coherent classical path description of deep tunneling, Phys. Rev. Lett.,93(2004) 140401-1~140404-4.

194. W. Lai, D. Xie, J. Yang, D. H. Zhang, A first-principles potential energy surface and vibrational states for hydrogen on Cu(100), J. Chem. Phys.,121(2004) 7434-7439.

195. S.-Y. Lee, D. H. Zhang, D. W. McCamant, P. Kukura, R. A. Mathies, Theory of femtosecond stimulated Raman spectroscopy, J. Chem. Phys.,121(2004) 3632-3642.

196. L. Yao, K. L. Han, H. S. Song, D. H. Zhang, Close-coupling time-dependent quantum dynamics study of the H+HCl reaction, J. Phys. Chem. A,107(2003) 2781-2786.

197. L. Yao, K. L. Han, H. S. Song, D. H. Zhang, Theoretical study of the X+YCl (X, Y=H, D) reactions, J. Chin. Chem. Soc.,50(2003) 565-574.

198. K.-L. Yeh, D. Xie, D. H. Zhang, S.-Y. Lee, R. Schinke, Time-dependent wave packet study of the O+O2(v=0, j=0) exchange reaction, J. Phys. Chem. A,107(2003) 7215-7219.

199. M. Brouard, I. Burak, D. Minayev, P. O’Keeffe, C. Vallance, F. J. Aoiz, L. Banares, J. F. Castillo, D. H. Zhang, D. Xie, M. Yang, S.-Y. Lee, M. A. Collins, Cross-section for the H+H2O abstraction reaction: experiment and theory, Phys. Rev. Lett.,90(2003) 093201-093204.

200. X. Shen, Z. Zhang, D. H. Zhang, CH4dissociation on Ni(111): a quantum dynamics study of lattice thermal motion, Phys. Chem. Chem. Phys.,17(2015) 25499-25504.

201. D. H. Zhang, D. Xie, M. Yang, S.-Y. Lee, State-to-state integral cross section for the H+H2O→H2+OH abstraction reaction, Phys. Rev. Lett.,89(2002) 283203-283206.

202. M. Brouard, I. Burak, D. Minayev, P. O’Keeffe, C. Vallance, F. J. Aoiz, L. Banares, J. F. Castillo, D. H. Zhang, M. A. Collins, The dynamics of the H+D2O→OD+HD reaction at 2.5 eV, J. Chem. Phys.,118(2002) 1162-1174.

203. D. H. Zhang, M. Yang, S.-Y. Lee, Accuracy of the centrifugal sudden approx­imation in the H+H2O reaction and accurate integral cross sections for the H+H2O→H2+OH abstraction reaction, J. Chem. Phys.,117(2002) 10067-10072.

204. M. Yang, D. H. Zhang, S.-Y. Lee, A seven-dimensional quantum study of the H+CH4reaction, J. Chem. Phys.,117(2002) 9539-9542 (JCP Communication).

205. D. H. Zhang, M. Yang, S.-Y. Lee, Breakdown of the spectator model for the OH bonds in studying the H+H2O reaction, Phys. Rev. Lett.,89(2002) 103201-103204.

206. D. H. Zhang, M. Yang, M. A. Collins, S.-Y. Lee, Probing the transition state via photoelectron and photodetachment spectroscopy of H3O, Proc. Nat. Acad. Sci. USA,99(2002) 11579-11582.

207. D. H. Zhang, M. Yang, S.-Y. Lee, Quantum dynamics of the D2+OH reaction, J. Chem. Phys.,116(2002) 2388-2394.

208. M. Yang, D. H. Zhang, M. A. Collins, S.-Y. Lee, Ab initio potential energy surfaces for the reactions H2+OH→H2O+H, J. Chem. Phys.,115(2001) 174-178.

209. D. H. Zhang, M. Yang, S.-Y. Lee, Branching ratio in the HD+OH reaction: A full-dimensional quantum dynamics study on a new ab initio potential energy surface, J. Chem. Phys.,114(2001) 8733-8736 (JCP Communication).

210. Y. M. Li, M. L. Wang, J. Z. H. Zhang, D. H. Zhang, Semirigid vibrating rotor target calculation for reaction H+HOD→H2+OH, HD+OH, J. Chem. Phys.,114(2001) 7013-7017.

211. M. Yang, D. H. Zhang, M. A. Collins, S.-Y. Lee, Quantum dynamics on new potential surfaces for the H2+OH→H2O+H reaction, J. Chem. Phys.,114(2001) 4759-4762 (JCP Communication).

212. D. H. Zhang, M. A. Collins, S.-Y. Lee, First-Principles Theory for the H+H2O, D2O Reactions, Science,290(2000) 961-963.

213. M. L. Wang, Y. Li, J. Z. H. Zhang, D. H. Zhang, Application of semirigid vibrating rotor target model to reaction of H+CH4→CH3+H2, J. Chem. Phys.,113(2000) 1802-1806.

214. T. Peng, D. H. Zhang, D. Y. Wang, Y. M. Li, J. Z. H. Zhang, Dynasol: A visual quantum dynamics package, Comp. Phys. Comm.,128(2000) 492–495.

215. R. P. Bettens, M. A. Collins, D. H. Zhang, Ab initio potential energy surface for the reactions between H2O and H, J. Chem. Phys.,112(2000) 10162-10172.

216. D. H. Zhang, S.-Y. Lee, M. Baer, Quantum mechanical integral cross sections and rate constant for the F+HD reaction, J. Chem. Phys.,112(2000) 9802-9809.

217. J. Z. H. Zhang, D. H. Zhang, Quantum wavepacket approach to chemical reaction dynamics, Perspective on “Dynamics of the collinear H+H2reaction. I. Probability density and flux”, Theor. Chem. Acc.,103(2000) 300-305.

218. D. H. Zhang, J. Z. H. Zhang, The semirigid vibrating rotor target model for atom-polyatom reaction: Application to H+H2O→H2+OH, J. Chem. Phys.,112(2000) 585-591.

219. D. H. Zhang, S.-Y. Lee, Effects of reagent rotation and the accuracy of the centrifugal sudden approximation in the H2+CN reaction, J. Chem. Phys.,112(2000) 203-211.

220. M. A. Collins, D. H. Zhang, Application of interpolated potential energy surfaces to quantum reactive scattering, J. Chem. Phys.,111(1999) 9924-9931.

221. D. H. Zhang, J. C. Light, S.-Y. Lee, Transition state wave packet study of hydrogen diffusion on Cu(100) surface, J. Chem. Phys.,111(1999) 5741-5753.

222. D. H. Zhang, D. Y. Wang, T. Peng, J. Z. H. Zhang, Ab initio SOFA quantum dynamics for chemical reaction, Chem. Phys. Lett.,307(1999) 453-462.

223. D. H. Zhang, J. Z. H. Zhang, A uniform J-shifting approach for calculating reaction rate constant, J. Chem. Phys.,110(1999) 7622-7626.

224. D. H. Zhang, S.-Y. Lee, Fully converged integral cross sections of diatom-diatom reactions and the accuracy of the centrifugal sudden approximation in the H2+OH reaction, J. Chem. Phys.,110(1999) 4435-4444.

225. Y. C. Zhang, Y. B. Zhang, L. Zhan, S. Zhang, D. H. Zhang, J. Z. H. Zhang, Time-dependent quantum dynamics study of reactive scattering of the H+O2involving long-lived resonances, Chin. Phys. Lett.,15(1998) 16-18.

226. D. H. Zhang, S.-Y. Lee, Effects of reagent rotational excitation on the dynamics of H2+OH→H2O+H, J. Chem. Phys.,109(1998) 2708-2716.

227. J. C. Light, D. H. Zhang, The Quantum Transition State Wave packet Method, Faraday Discuss,110(1998) 105-118.

228. R. B. Lehoucq, S. K. Gray, D. H. Zhang, J. C. Light, Vibrational eigenstates of four-atom molecules: A parallel strategy employing the implicitly restarted Lanczos method, Comput. Phys. Comm.,109(1998) 15-26.

229. W. Zhu, J. Z. H. Zhang, D. H. Zhang, Full dimension quantum dynamics calculation for D2+CN reaction, Chem. Phys. Lett.,292(1998) 46-50.

230. D. H. Zhang, J. C. Light, S.-Y. Lee, Quantum rate constant for the H2+OH reaction with the centrifugal sudden approximation, J. Chem. Phys.,109(1998) 79-86.

231. W. Zhu, J. Z. H. Zhang, Y. C. Zhang, Y. B. Zhang, L. X. Zhan, S. L. Zhang, D. H. Zhang, Quantum dynamics study of H2+CN→HCN+H reaction in full dimensions, J. Chem. Phys.,189(1998) 3509-3516.

232. D. H. Zhang, J. C. Light, Mode specificity in the H + HOD reaction: a full dimensional quantum study, J. Chem. Soc., Faraday Trans.,93(1997) 691-697.

233. H. Tang, D. H. Zhang, Studies on determination of degree of coupling of Fermi resonance, Chem. Phys. Lett.,265(1997) 84-90.

234. D. H. Zhang, J. C. Light, The cumulative reaction probability for the H2+OH reaction, J. Chem. Phys., 106 (1997) 551-563.

235. W. Zhu, J. Dai, J. H. Z. Zhang, D. H. Zhang, State-to-state time-dependent quantum calculation for reaction H2+OH→H+H2O in six dimensions, J. Chem. Phys., 105 (1996) 4881-4884 (JCP Communication).

236. D. H. Zhang, J. C. Light, Quantum state-to-state reaction probabilities for the H+H2O→H2+OH reaction in six dimensions, J. Chem. Phys., 105 (1996) 1291-1294 (JCP Communication).

237. Q. Wu, D. H. Zhang, J. Z. H. Zhang, 6D quantum calculation of energy levels for HF stretching excited (HF)2, J. Chem. Phys.,103(1995) 2548-2554.

238. D. H. Zhang, J. C. Light, Cumulative reaction probability via transition state wave packets, J. Chem. Phys., 104 (1996) 6184-6191.

239. D. H. Zhang, J. C. Light, A six dimensional quantum study for atom-triatom reactions: The H+H2O→H2+OH reaction, J. Chem. Phys.,104(1996) 4544-4553.

240. T. Peng, D. H. Zhang, J. Z. H. Zhang, R. Schinke, Reaction of O(1D)+H2→HO+H, A three-dimensional quantum dynamics study, Chem. Phys. Lett.,248(1996) 37-42.

241. D. H. Zhang, J. C. Light, Potential inversion via variational generalized inverse, J. Chem. Phys.,103(1995) 9713-9720.

242. Y. Zhang, D. Zhang, W. Li, Q. Zhang, D. Wang, D. H. Zhang, J. Z. H. Zhang, Quantum dynamics study for D2+OH reaction, J. Phys. Chem.,99(1995) 16824-16828.

243. D. H. Zhang, J. Z. H. Zhang, Quantum calculations of reaction probabilities for HO+CO→H+CO2and bound states of HOCO, J. Chem. Phys.,103(1995) 6512-6519.

244. D. H. Zhang, J. Z. H. Zhang, Y. Zhang, D. Wang, Q. Zhang, Quantum dynamics study of the reaction HD+OH→H+DOH, D+HOH, J. Chem. Phys.,102(1995) 7400-7408.

245. M. Dirke, Z. Bačić, D. H. Zhang, J. Z. H. Zhang Vibrational predissociation of HF dimer in vHF=1: influence of initially excited intermolecular vibrations on the fragmentation dynamics, J. Chem. Phys.,102(1995) 4382-4389.

246. D. H. Zhang, Q. Wu, J. Z. H. Zhang, M. Dirke, Z. Bačić, Exact full-dimensional bound state studies for (HF)2, (DF)2, and HFDF, J. Chem. Phys.,102(1995) 2315-2325.

247. D. H. Zhang, J. Z. H. Zhang, Accurate time-dependent quantum scattering calculation for diatom-diatom reaction with branching: HD+OH→H+DOH, D+HOH, Chem. Phys. Lett.,232(1995) 370-373.

248. D. H. Zhang, Q. Wu, J. Z. H. Zhang, A time-dependent approach to flux calculation in molecular photofragmentation: Vibrational predissociation of HF-DF, J. Chem. Phys.,102(1995) 124-132.

249. D. H. Zhang, J. Z. H. Zhang, Quantum reactive scattering with a deep well: Time-dependent calculation for H+O2reaction and bound state characterization for HO2, J. Chem. Phys.,101(1994) 3671-3678.

250. D. H. Zhang, J. Z. H. Zhang, Full-dimensional time-dependent treatment for diatom-diatom reactions: the H2+OH reaction, J. Chem. Phys.,101(1994) 1146-1156.

251. Z. T. Cai, D. H. Zhang, J. Z. H. Zhang, Quantum dynamical studies for photodissociation of H2O2at 248 and 266 nm, J. Chem. Phys.,100(1994) 5631-5638.

252. D. H. Zhang, J. Z. H. Zhang, Accurate quantum calculation for H2+OH→H2O+H: reaction probabilities, cross sections and rate constants, J. Chem. Phys.,100(1994) 2697-2706.

253. D. H. Zhang, J. Z. H. Zhang, Photofragmentation of HF dimer: Quantum dynamics studies on ab initio potential energy surfaces, J. Chem. Phys.,99(1993) 6624-6633.

254. D. H. Zhang, J. Z. H. Zhang, Accurate quantum calculation for the benchmark reaction H2+OH→H2O+H in five-dimensional space: Reaction probabilities for J=0, J. Chem. Phys.,99(1993) 5615-5618 (JCP Communication).

255. D. H. Zhang, J. Z. H. Zhang, Total and partial decay widths in vibrational predissociation of HF dimer, J. Chem. Phys.,98(1993) 5978-5981 (JCP Communication).

256. D. H. Zhang, J. Z. H. Zhang, Quantum mechanical calculation for photodissociation of hydrogen peroxide, J. Chem. Phys.,98(1993) 6276-6283.

257. D. H. Zhang, O. A. Sharafeddin, J. Z. H. Zhang, Product state distribution in time-dependent quantum wave packet calculation with an optical potential, Chem. Phys.,167(1992) 137-148.

258. D. H. Zhang, J. Z. H. Zhang, Vibrational predissociation of HD-HF, Chem. Phys. Lett., 199 (1992) 187-190.

259. D. H. Zhang, J. Z. H. Zhang, Zlatko Bačić, A time-dependent calculation of vibrational predissociation of H2HF, J. Chem. Phys., 97 (1992) 3149-3156.

260. D. H. Zhang, J. Z. H. Zhang, Zlatko Bačić, Mode-specific decay widths in vibrational predissociation of D2HF, Chem. Phys. Lett., 194 (1992) 313-317.

261. D. H. Zhang, J. Z. H. Zhang, Zlatko Bačić, A time-dependent golden rule wave packet calculation for vibrational predissociation of D2HF, J. Chem. Phys., 97 (1992) 927-934.

262. D. H. Zhang, J. Z. H. Zhang, An efficient time-dependent golden rule treatment for three-dimensional vibrational predissociation of HeI2, J. Phys. Chem., 96 (1992) 1575-1578.

263. D. H. Zhang, J. Z. H. Zhang, Time-dependent treatment of vibrational predissociation within golden rule approximation, J. Chem. Phys., 95 (1991) 6449-6455.



Copyright © 中国科学院大连化学物理研究所 反应动力学理论与计算研究组 版权所有 All Rights Reserved.